Home
Class 14
MATHS
" Where "5x sqrt(1+y)+y sqrt(1+x)=0" and...

" Where "5x sqrt(1+y)+y sqrt(1+x)=0" and "x!=y," prove that "(dy)/(dx)=-(1)/((x+1)^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt ( 1+ y) + y sqrt( 1+x) =0 , prove that (dy)/( dx) = - (1)/( (1+x)^2) .

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

If x sqrt(1+y)+y sqrt(1+x)=0, find (dy)/(dx)* To prove (dy)/(dx)=-(1)/((1+x)^(2))

If quad sqrt(1+y)+y sqrt(1+x)0,-1

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If x sqrt(1+y)+y sqrt(1+x)=0 and x!=y ,then (1+x)^(2)(dy)/(dx)+(3)/(2)=

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y), prove that (dy)/(dx)=sqrt((1-y^2)/(1-x^2))