Home
Class 10
MATHS
" Prove that "(sin^(3)A+cos^(3)A)/(sin A...

" Prove that "(sin^(3)A+cos^(3)A)/(sin A+cos A)+(sin^(3)A-cos^(3)A)/(sin A-cos A)=2

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sin^3A+cos^3A)/(sin A+cos A)+(sin^3A-cos^3A)/(sin A-cos A)=2

Prove that following identities (sin^(3)A+cos^(3))/(sinA+cosA)+(sin^(3)A-cos^(3)A)/(sinA-cosA)=2

Prove the following identity: (sin^3A+cos^3A)/(sinA+cosA)+(sin^3A-cos^3A)/(sinA-cosA)=2

Prove that (sin A+cos A)(1-sin A cos A)=sin^(3)A+cos^(3)A

(sin A+cos A)(1-sin A*cos A)=sin^(3)A+cos^(3)A

Prove that (sin5A- sin3A)/(cos 5A +cos 3A)= tanA

(sin^(3) A + sin 3A)/( sin A )+ (cos^(3) A - cos 3A)/( cos A )=

Prove that : (cos^(3) A + sin^(3) A)/ (cos A + sin A) + (cos^(3) A - sin^(3) A)/(cos A - sin A) = 2

Prove that : cos^(3)A cos3A+sin^(3)A sin3A=cos^(3)2A

Prove that: (sin A+sin3A)/(cos A-cos3A)=cotA