Home
Class 11
MATHS
[log(30)^(3)=a,quad log(30)5=b],[log(30)...

[log_(30)^(3)=a,quad log_(30)5=b],[log_(30)8=9]

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(30)3=x,log_(30)5=y,thenlog_(30)8=

If log_(10)3=x and log_(30)5=y , then log_(30)8 is equal to

STATEMENT-1 : Number of solution of log |x| = theta^(x) is two and STATEMENT-2 : If log_(30) 3 - a , log_(30) 5 = b "then" log_(30) 8 = 3 (1 - a - b) .

If "log"_(30) 3 = x, "log"_(30) 5 =y, "then log"_(30) 8=

If log_30(3)=alpha and log_30(5)=beta, then log_30(8) is equal to

If (log)_(10)5=aand(log)_(10)3=b, then (A)(log)_(30)8=(3(1-a))/(b+1)(B)(log)_(40)15=(a+b)/(3-2a)(C)(log)_(243)32=(1-a)/(b) (d) none of these

If log_30 3 = x, log_30 5 = y, then log_30 8 =

If log_(30)3=a and log_(30)5=b find the value of log_(30)8

Find the value of the product: |(log_(3)64,log_(4)3),(log_(3)8,log_(4)9)|xx|(log_(2)3,log_(8)3),(log_(3)4,log_(3)4)|