Home
Class 12
MATHS
int(0)^( pi/2)log sin xdx=(pi)/(2)log(1)...

int_(0)^( pi/2)log sin xdx=(pi)/(2)log(1)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that int_(0)^((pi)/(2))logsinxdx=(pi)/(2)log((1)/(2))=(-pi)/(2)log2

int_(0)^(pi//2) log sin x dx =

int_(0)^( pi)log xdx

Statement-1: int_(0)^(pi//2) x cot x dx=(pi)/(2)log2 Statement-2: int_(0)^(pi//2) log sin x dx=-(pi)/(2)log2

If int_(0)^((pi)/(2))logcosxdx=(pi)/(2)log((1)/(2)) , then int_(0)^((pi)/(2))logsecdx=

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

int_(0)^(pi)log sin^(2)x dx=

int_(0)^(pi)log sin^(2)x dx=