Home
Class 12
MATHS
If y=1+(a1)/(x-a1) +a2x/(x-a1)(x-a2)+(a...

If ` y=1+(a_1)/(x-a_1) +a_2x/(x-a_1)(x-a_2)+(a_3x^2)/(x-a_1)(x-a_2)(x-a_3)` show that `(dy/dx)=y/x((a_1)/(a_1-x)+(a_2)/(a_2-x)+(a_3)/(a_3-x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that |(1/(a-a_1)^2,1/(a-a_1),1/a_1),(1/(a-a_2)^2,1/(a-a_2),1/a_2),(1/(a-a_3)^2,1/(a-a_3),1/a_3)|=(-a^2(a_1-a_2)(a_2-a_3)(a_3-a_1))/(a_1a_2a_3(a-a_1)^2(a-a_2)^2(a-a_3)^2) .

Prove that ((a_1)/(a_2)+(a_3)/(a_4)+(a_5)/(a_6)) ((a_2)/(a_1)+(a_4)/(a_3)+(a_6)/(a_5)) geq 9

1 + (x)/( a_1) + ( x( x+a_1) )/( a_1 a_2 ) + .... + ( x ( x+a_1) (x+ a_2)... ( x+a_(n-1) ) )/( a_1 a_2 ..... a_n)=

If (a_2a_3)/(a_1a_4) = (a_2+a_3)/(a_1+a_4)=3 ((a_2 -a_3)/(a_1-a_4)) then a_1,a_2, a_3 , a_4 are in :

If (a_2a_3)/(a_1a_4) = (a_2+a_3)/(a_1+a_4)=3 ((a_2 -a_3)/(a_1-a_4)) then a_1,a_2, a_3 , a_4 are in :

If a_1, a_2, ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)++(a_(n-1))/(a_n)+(a_n)/(a_1)> n

Find the coefficient of x in the determinant |((1+x)^(a_1 b_1),(1+x)^(a_1 b_2),(1+x)^(a_1 b_3)),((1+x)^(a_2 b_2),(1+x)^(a_2 b_2),(1+x)^(a_2 b_3)),((1+x)^(a_3 b_3),(1+x)^(a_3 b_2),(1+x)^(a_3 b_3))|=0.

If (a_2 a_3)/(a_1 a_4) = (a_2 + a_3)/(a_1 + a_4) = 3 ((a_2 - a_3)/(a_1 - a_4)) then a_1, a_2, a_3, a_4 are in

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n