Home
Class 12
MATHS
" If "iz^(3)+z^(2)-z+i=0," the show that...

" If "iz^(3)+z^(2)-z+i=0," the show that "|z|=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If iz^(3)+z^(2)-z+i=0 then show that |z|=1.

If iz^3+z^2-z+i = 0 , then show that |z|=1.

if iz^3+z^2-z+i=0 then show that absz=1

If iz^3+z^2-z+i= 0 , then abs(z) =

If iz^(3)+z^(2)-z+i=0 , where i= sqrt-1 then |z| is equal to

Show that if iz^(3)+z^(2)-z+i=0, then |z|=1

If iz^(3) + z^(2) - z + I = 0 , then |z| =_______

Let z_(1), z_(2), z_(3) be the roots of iz^(3) + 5z^(2) - z + 5i = 0 , then |z_(1)| + |z_(2)| + |z_(3)| = _____________.