Home
Class 12
MATHS
STATEMENT-1 : lim(x->oo)(log[x])/([x])=0...

STATEMENT-1 : `lim_(x->oo)(log[x])/([x])=0`. STATEMENT-2 : `lim_(x->0)(sqrt(sec^2-1))/x` does not exist. STATEMENT-3: `lim_(x->2)(x-1)^(1/(x-2)) = 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(log(1-(x)/(2)))/(x)

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

lim_(x to 0)(xe^(x)-log(1+x))/(x^(2))=

lim_(x rarr0)(sqrt(1+sin3x)-1)/(log(1+tan2x))

Statement 1:lim_(x rarr0)(sqrt(1-cos2x))/(x) does not existe.Statement 2:f(x)=(sqrt(1-cos2x))/(x) is not defined at x=0

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

Statement - I: if lim_(x to 0)((sinx)/(x)+f(x)) does not exist, then lim_(x to 0)f(x) does not exist. Statement - II: lim_( x to 0)(sinx)/(x)=1