Home
Class 9
MATHS
Prove that if p=2-a , then a^3+6ap+p^3-8...

Prove that if `p=2-a` , then `a^3+6ap+p^3-8=0`

Text Solution

Verified by Experts

P=a
`a^3+6ap+p^3-8=0`
LHS
`a^3+6ap+p^3-8`
`a^3+6a(2-a)+(2-a)^3-8`
`a^3+6a*2-a)+8-a^3-6a(2-a)-8`
` `0`
RHS.
Promotional Banner

Similar Questions

Explore conceptually related problems

If p=2-a, prove that a^3+6ap+p^3-8=0

If p=2-a, prove that a^(3)+6ap+p^(3)-8=0

If p=2-a; prove that a^(3)+6ap+p^(3)-8=0

If p=2-a , prove that a^3+6a p+p^3-8=0

If p=2-a , prove that a^3+6a p+p^3-8=0

If p-2^(a), then show that a^(4)+6ap+p^(8)=0

Prove that a - 5b, a - b and a + 3b are consecutive term of an A.P.

Prove that the number of terms in the A.P. 3,6,9,….111 is 37

The sum of p terms of a series is 3p^(2) + 5p . Prove that the terms of the series form an A.P.

Consider the G.P. 12,8 ,16/3,…Prove that the 6^(th) term of the G.P is (128)/81