Home
Class 12
MATHS
" If "y=e^(x)+e^(-x)," then prove that "...

" If "y=e^(x)+e^(-x)," then prove that "(dy)/(dx)=sqrt(y^(2)-4)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x)+e^(-x), prove that (dy)/(dx)=sqrt(y^(2)-4)

If y=e^(x)+e^(-x), prove that (dy)/(dx)=sqrt(y^(2)-4)

If y=e^x+e^(-x) , prove that (dy)/(dx)=sqrt(y^2-4)

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If y=e^x+e^-x , prove that (dy)/(dx)=sqrt(y^2-4)

If y=e^(a sin^(-1)x) then prove that dy/dx=(ay)/(sqrt(1-x^(2)) .

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .