Home
Class 12
MATHS
I=int(a)^( oo)(dx)/(x^(4)sqrt(a^(2)+x^(2...

I=int_(a)^( oo)(dx)/(x^(4)sqrt(a^(2)+x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(a)^(oo) (dx)/(x^(4)sqrt(a^(2) + x^(2)))=(2-sqrt(2))/(3a^(4))

int_(0)^(oo)(dx)/((x+sqrt(x^(2)+1))^(3))=

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

int_(0)^(oo)(dx)/([x+sqrt(1+x^(2))]^(n)

int_(0)^(oo) (dx)/((x+sqrt(x^(2)+1))^(3))=

I=int_(0)^(oo)(x)/((x^(2)+a^(2))^(2))dx

I=int(dx)/(sqrt(x^(2)-a^(2)))

The value of the expression (int_(0)^(a)x^(4)sqrt(a^(2)-x^(2))dx)/(int_(0)^(a)x^(2)sqrt(a^(2)-x^(2))dx)=