Home
Class 11
MATHS
The equation loge x+ loge (1+x)=0 can be...

The equation `log_e x+ log_e (1+x)=0` can be written as

Promotional Banner

Similar Questions

Explore conceptually related problems

The set of values of 'a' for which the equation log_(e)(a log_(e)x)=log_(e)x has nore than one solution is

If log e^(x)+log e^(1+x)=0 then x=

The integrating factor of the differential equation (dy)/(dx)(x log_e x)+y=2 log_e x is given by

Solve : log_e (x-a) + log_e x =1 (a>0)

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

For the function f(x) = (log_(e )(1+x)-log_(e )(1-x))/(x) to be continuous at x = 0, the value of f(0) should be