Home
Class 12
MATHS
(v)(x^(x))^(x)...

(v)(x^(x))^(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Check whether the following are quadratic equations:(v)(2x-1)(x-3)=(x+5)(x-1)

The p.d.f. of a continuous r.v. X is f(x)={{:((x^(2))/(3)","-1ltxlt2),(0", otherwise"):} , then F (x) =

Convert the following points from polar coordinates to the corresponding Cartesian coordinates. (i) ( i i ) (iii)(( i v ) (v)2, (vi)pi/( v i i )3( v i i i ) (ix) (x))( x i ) (xii) (ii) ( x i i i ) (xiv)(( x v ) (xvi)0, (xvii)pi/( x v i i i )2( x i x ) (xx) (xxi))( x x i i ) (xxiii) (iii) ( x x i v ) (xxv)(( x x v i ) (xxvii)-sqrt(( x x v i i i )2( x x i x ))( x x x ) , (xxxi)pi/( x x x i i )4( x x x i i i ) (xxxiv) (xxxv))( x x x v i ) (xxxvii)

Let y= int_(u(x))^(y(x)) f (t) dt, let us define (dy)/(dx) as (dy)/(dx)=v'(x) f (v(x)) - u' (x) f(u(x)) and the equation of the tangent at (a,b) and y-b=((dy)/(dx))(a,b) (x-a) . If y=int_(x^(2))^(x^(4)) (In t) dt , "then" lim_(x to 0^(+)) (dy)/(dx) is equal to

Let y= int_(u(x))^(y(x)) f (t) dt, let us define (dy)/(dx) as (dy)/(dx)=v'(x) f (v(x)) - u' (x) f(u(x)) and the equation of the tangent at (a,b) and y-b=((dy)/(dx))(a,b) (x-a) . If y=int_(x^(2))^(x^(4)) (In t) dt , "then" lim_(x to 0^(+)) (dy)/(dx) is equal to

The p.d.f. of a continuous r.v. X is f(x)={{:((x^(2))/(3)","-1lt x lt 2),(0", otherwise"):} , then P(1 lt X lt2) =

The p.d.f. of a continuous r.v. X is f(x)={{:((x^(2))/(3)","-1lt x lt 2),(0", otherwise"):} , then P(X le -2) =