Home
Class 12
MATHS
If tanalpha=(1+2^(-x))^(-1), tan beta=(1...

If `tanalpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1)`, then `alpha+beta`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If tanalpha=(1+2^(-x))^(-1), tanbeta=(1+2^(x+1))^(-1) , then alpha+beta=

If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+beta equals

If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+beta equals

If tanalpha=(1+2^(-x))^(-1) , tanbeta=(1+2^(x+1))^(-1) , then alpha+beta equals

If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+beta equals.................. A) pi/6 B) pi/4 C) pi/3 D) pi/2

tan alpha=(1+2^(-x))^(-1),tan beta=(1+2^(x+1))^(-1)alpha+beta

If tan alpha =(1+2^(-x))^(-1) and tan beta =(1+2^(x+1))^(-1) then the value of (alpha + beta) is-

If tan alpha=(x)/(x+1) andtan beta=(1)/(2x+1), then alpha+beta is equal to (pi)/(2) b.(pi)/(3) c.(pi)/(6) d.(pi)/(4), then alpha+beta

If tan alpha=(x)/(x+1) and tan beta=(1)/(2x+1), then alpha+beta is

If tanalpha=1/(1+2^(-x)) and tanbeta=1/(1+2^(x+1)), then write the value of alpha+beta lying in the interval (0,pi//2) .