Home
Class 12
MATHS
|[sin^2A, sinA, cos^2A] , [sin^2B, sinB,...

`|[sin^2A, sinA, cos^2A] , [sin^2B, sinB, cos^2B] , [sin^2C, sinC, cos^2C]|=-(sinA-sinB)(sinB-sinC)(sinC-sinA)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangleABC, a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=

If |[cos(A+B), -sin(A+B), cos2B], [sinA, cosA, sinB], [-cosA, sinA, cosB]|=0 , then B=

If in a !ABC , (sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB then

In DeltaABC, (sin2A+sin2B+sin 2C)/(sinA+sinB+sinC)=

If in a triangle ABC , (sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB then

Show that sinA*sin(B-C)+sinB*sin(C-A)+sinC*sin(A-B)=0 .

If A+B+C= pi/2 , show that : sin^2 A + sin^2 B + sin^2 C=1-2 sinA sinB sinC

If A+B+C= pi/2 , show that : sin^2 A + sin^2 B + sin^2 C=1-2 sinA sinB sinC

If A+B+C= pi/2 , show that : sin^2 A + sin^2 B + sin^2 C=1-2 sinA sinB sinC