Home
Class 11
MATHS
4^(log10x+ 1)- 6^(log10x) - 2*3^(log10x^...

`4^(log_10x+ 1)- 6^(log_10x) - 2*3^(log_10x^2 + 2) = 0`. Find `x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find 'x' satisfying the equation 4^(log_(10) x + 1) - 6^(log_(10)x) - 2.3 ^(log_(10)x^(2) + 2) = 0 .

Solve the following equation. 4^(log_10x+1)-6^(log_10x)-2.3^(log_10x^2+2)=0

Solve the following equations. (vii) 4^(log_10x+1)-6^(log_10x)-2.3^(log_10x^2+2)=0

Solve the following equations. (vii) 4^(log_10x+1)-6^(log_10x)-2.3^(log_10x^2+2)=0

Solve the following equations. (vii) 4^(log_10x+1)-6^(log_10x)-2.3^(log_10x^2+2)=0

[log_10⁡(x)]^2 − log_10⁡(x^3) + 2=0

FInd 'x' satisfying the equation 4^(log_(10)x+1)-6^(log_(10)x)-2.3^(log10)x^(2)+2=0

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

(log_(10)100x)^(2)+(log_(10)10x)^(2)+log_(10)x<=14