Home
Class 12
MATHS
" If "f(x)=sin(lim(t rarr0)(2x)/(pi)cot^...

" If "f(x)=sin(lim_(t rarr0)(2x)/(pi)cot^(-1)(x)/(t^(2)))," then "int_(-(pi)/(2))^((pi)/(2))f(x)dx" is equal to (where,"x!=0)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = sin(lim_(t rarr 0)(2x)/picot^(-1) (x/t^2)) , then int_(-(pi)/(2))^((pi)/(2))f(x) dx is equal to (where , x ne0 )

If f(x) = sin(lim_(t rarr 0)(2x)/picot^(-1) (x/t^2)) , then int_(-(pi)/(2))^((pi)/(2))f(x) dx is equal to (where , x ne0 )

lim_(x rarr0)(sin x)/(pi-x)

lim_(x rarr0)(cos x)/(pi-x)

lim_(x rarr0)(sin^2x)/(1-cosx)

lim_(x rarr0)x^(2)sin(pi/x)=

lim_(x rarr0)(1+sin x)^(cot x)

. lim_(x rarr0)(x^(2))/(sin x^(2))

(lim)_(x rarr0)(sin(pi cos^(2)x))/(x^(2)) is equal to

lim_(x rarr 0) (sin (pi cos ^(2) x))/(x^(2)) equals :