Home
Class 12
MATHS
The determinant |(4+x^2,-6,-2),(-6,9+x^2...

The determinant `|(4+x^2,-6,-2),(-6,9+x^2,3),(-2,3, 1+x^2)|` is not divisible

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |{:(2,3,4),(5,6,8),(6x,9x,12x):}| is

A factor of the determinant |{:(x,-6,-1),(2,-3x,x-3),(-3,2x,x+2):}| is …………..

x ^(3) + 6x ^(2) + 11 x + 6 is divisible by

The value of the determinant |(x+2,x+3,x+5),(x+4,x+6,x+9),(x+8,x+11,x+15)| is A)2 B)-2 C)3 D)-1

Find the value of the determinant = |(2, 3, 4) ,(5, 6, 8),( 6x,9x, 12 x)| .

Without actual division, show that f(x) = 2x^(4) - 6x^(3) + 3x^(2) + 3x - 2 is exactly divisible by x^(2)- 3x + 2 .

Find the value of the determinant = |(2, 3, 4),( 5, 6, 8),( 6x,9x ,12 x)|

Without actual division,prove that (2x^(4)-6x^(3)+3x+3x-2) is exactly divisible by (x^(2)-3x+2)

Write the value of the determinant |2 3 4 5 6 8 6x9x 12 x|