Home
Class 11
MATHS
If cosx = -sqrt15/4 and pi/2 < x < pi, f...

If `cosx = -sqrt15/4` and `pi/2 < x < pi`, find the value of `sinx`

Text Solution

Verified by Experts

`sin^x+cos^2x=1`
`sin^2x=1-cos^2x`
`=1-(sqrt15/4)^2`
`=1-15/16=1/16`
`sinx=pm1/4`
`sinx=1/4`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If sinx-cosx=-sqrt(2) the principal value of (x-(pi)/(4)) is

The value of int_0^(pi//2)(sqrt(cosx))/(sqrt(cos x)+sqrt(s in x))dx is pi//2 b. pi//4 c. 0 d. none of these

The value of int_0^(pi//2)(sqrt(cosx))/(sqrt(cos x)+sqrt(sin x))dx is pi//2 b. pi//4 c. 0 d. none of these

Prove that: (i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2 ,

Prove that: (i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2 ,

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx),forx in (pi/4,pi/2) (b) cosx+sinx ,forx in (0,pi/4) (c) -(cosx+sinx),forx in (0,pi/4) (d) cosx-sinx ,forx in (pi/4,pi/2)

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

simplify cos^(-1) ((sinx+cosx)/sqrt2) , pi/4 < x < (5pi )/4

simplify cos^(-1) ((sinx+cosx)/sqrt2) , pi/4 < x < (5pi )/4