Home
Class 12
MATHS
Let k=1^@ then prove that sum(n=0)^(88)1...

Let `k=1^@` then prove that `sum_(n=0)^(88)1/(cosnkcos(n+1)k)`=`cosk/sin^2k`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let k=1^@ , then prove that sum_(n=0)^88 1/(cosnk* cos(n+1)k)=cosk/sin^2k

Let k=1^@ , then prove that sum_(n=0)^88 1/(cosnk* cos(n+1)k)=cosk/sin^2k

Let k=1^(@) then prove that sum_(n=0)^(88)(1)/(cos nk cos(n+1)k)=(cos k)/(sin^(2)k)

Let k=1^(@), then prove that sum_(n=0)^(88)(1)/(cos nk*cos(n+1)k)=(cos k)/(sin^(2)k)

Prove that sum_(k=1)^n 1/(k(k+1))=1−1/(n+1) .

Prove that sum_(k=1)^(n)(1)/(k(k+1))=1-(1)/(n+1).

If a_k=1/(k(k+1)) for k=1 ,2……..,n then prove that (sum_(k=1)^n a_k)^2 =n^2/(n+1)^2

Prove that sum_ (k = 0) ^ (n) nC_ (k) sin Kx.cos (nK) x = 2 ^ (n-1) sin nx

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =