Home
Class 12
MATHS
If A+B+C=pi, prove that tan^2A/2+tan^2B/...

If `A+B+C=pi,` prove that `tan^2A/2+tan^2B/2+tan^2C/2geq1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi, prove that tan^2(A/2)+tan^2(B/2)+tan^2(C/2)geq1.

If A + B + C = pi , prove that tan^2(A/2)+tan^2(B/2)+tan^2(C/2)ge1

In a triangle ABC, prove that: tan^2, A/2+tan^2, B/2+tan^2, C/2ge1

If A+B+C=pi, prove that tan^(2)(A)/(2)+tan^(2)(B)/(2)+tan^(2)(C)/(2)>=1

If A+B+C=pi , prove that : tan( A/2) tan (B/2) + tan (B/2 )tan (C/2)+ tan( C/2) tan (A/2) =1

If A+B+C=pi , prove that : tan( A/2) tan (B/2) + tan (B/2 )tan (C/2)+ tan( C/2) tan (A/2) =1

If A+B+C=pi prove that "tan"A/2"tan"B/2+"tan"B/2"tan"C/2+"tan"C/2"tan"A/2=1

If A + B + C =180^@ , prove that : tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C .