Home
Class 9
MATHS
y(6)x=9+4sqrt(5);" find "sqrt(x)-(1)/(sq...

y_(6)x=9+4sqrt(5);" find "sqrt(x)-(1)/(sqrt(x))

Promotional Banner

Similar Questions

Explore conceptually related problems

if x=9+4sqrt(5) find the value of sqrt(x)-(1)/(sqrt(x))

Solve: (2)/(sqrt(x))-(3)/(sqrt(y))=2 and (4)/(sqrt(x))-(9)/(sqrt(y))=-1

(2)/(sqrt(x))+(3)/(sqrt(y))=2 and (4)/(sqrt(x))-(9)/(sqrt(y))=-1

If x=(sqrt(5)+1)/(sqrt(5)-1) and y=(sqrt(5)-1)/(sqrt(5)+1) find the value of x^(2)+y^(2)

{:((2)/(sqrt(x))+ (3)/(sqrt(y)) = 2),((4)/(sqrt(x))-(9)/(sqrt(y)) = -1):}

Evaluate: ("Lim")_(x->4)(sqrt(2x+1)+sqrt(x-3)-4)/(sqrt((3x+4))+sqrt(5x+5)-9)

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If x=2sqrt(5)+sqrt(3) and y=2sqrt(5)-sqrt(3) , then x^(4)+y^(4) =

Using properties of proportion, solve for x : (i) (sqrt(x + 5) + sqrt(x - 16))/ (sqrt(x + 5) - sqrt(x - 16)) = (7)/(3) (ii) (sqrt(x + 1) + sqrt(x - 1))/ (sqrt(x + 1) - sqrt(x - 1)) = (4x -1)/(2) . (iii) (3x + sqrt(9x^(2) -5))/(3x - sqrt(9x^(2) -5)) = 5 .