Home
Class 11
MATHS
[" Ioga "=(log b)/(2-x)=(log e)/(x-y)" ,...

[" Ioga "=(log b)/(2-x)=(log e)/(x-y)" ,then "a^(x)b^(y)c^(z)],[y-2quad z-xquad ]

Promotional Banner

Similar Questions

Explore conceptually related problems

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y), thena ^(x)b^(y)c^(z) is

log a/(y-z)=log b/(z-x)=logc/(x-y), then a^xb^yc^z is equal to

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) then value of abc=

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is

If (log_(e)a)/(y-z)=(log_(e)b)/(z-x)=(log_(e)c)/(x-y), then a^(y^(2)+yz)=*b^(z^(2)+zx+x^(2))*c^(x^(2)+xy+y^(2)) equals

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

underset equal to b-c=(log y)/(c-a)=(log z)/(a-b) then x^(a)y^(b)z^(c) is

If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .

If (loga)/(y+z)=(log b)/(z+x)=(log c)/(x+y) show that (b/c )^(x)(c /a)^(y)(a/b)^z=1