Home
Class 12
MATHS
" Find "(dy)/(dx)," if "y=tan^(-1)((3x-x...

" Find "(dy)/(dx)," if "y=tan^(-1)((3x-x^(3))/(1-3x^(2))),-(1)/(sqrt(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , if y = tan^(-1) ((3x - x^3)/(1 - 3x^2)) , (-1)/(sqrt3) lt x lt 1/(sqrt(3))

Find quad (dy)/(dx) in the following: y=tan^(-1)((3x-x^(3))/(1-3x^(2))),-(1)/(sqrt(3))

Find dy/dx in the following : y=tan^(-1)((3x-x^(3))/(1-3x^(2))),-1/sqrt3ltxlt1/sqrt3

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if x<-(1)/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if x>(1)/(sqrt(3))

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

y= tan^(-1)((3x-x^(3))/(1-3x^(2))) Find dy/dx