Home
Class 13
MATHS
int(0)^( pi/2)d log tan xdx=...

int_(0)^( pi/2)d log tan xdx=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: int_(0)^( pi/2)log|tan x|dx=0

If int_(0)^( pi/2)log sin xdx=k, then the value of the definite integral int_(0)^( pi/4)log(1+tan theta)d theta( i) -(K)/(8)( ii) -(K)/(4) (iii) (K)/(8) (iv) (K)/(4)

Evaluate: int_(0)^( pi)x log sin xdx

Evaluate int_(0)^( pi)x log sin xdx

What is the value of int_0^(pi/2)log tan x dx ?

Evaluate int_0^(pi/2) log sin xdx

Evaluate (i) int_(0)^(pi//2)(d x)/(1+sqrt(tan x)) (ii) int_(0)^(pi//2) log (tan x ) d x (iii) int_(0)^(pi//4) log (1+tan x ) d x (iv) int_(0)^(pi//2)(sin x- cos x)/(1+ sin x cos x)d x

Evaluate (i) int_(0)^(pi//2)(d x)/(1+sqrt(tan x)) (ii) int_(0)^(pi//2) log (tan x ) d x (iii) int_(0)^(pi//4) log (1+tan x ) d x (iv) int_(0)^(pi//2)(sin x- cos x)/(1+ sin x cos x)d x

int_(0)^(pi//2) log | tan x | dx is equal to

int_(0)^(pi//2) log (tan x ) dx=