Home
Class 12
MATHS
cos(2sin^(-1)x)=(1)/(a)quad x>0...

cos(2sin^(-1)x)=(1)/(a)quad x>0

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x, cos (2sin^(-1)x)=(1)/(9), x gt 0 .

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

The value of tan(sin^(-1)(cos(sin^(-1)x)))tan(cos^(-1)(sin(cos^(-1)x)))." where "x in (0, 1) is equal to

underset(x to 0)"Lt" (cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+1)-1)=

Solve: cos{2sin^(-1)(-x)}=0

Solve: cos{2sin^(-1)(-x)}=0

f(x)=sin{cot^(-1)(x+1)}-cos(tan^(-1)x), a=costan^(-1)sincot^(-1)x, b=cos(2cos^(-1)x+sin^(-1)x) If f(x)=0 then a^(2)=

{ cos (sin ^(-1) x)}^(2) ={sin (cos ^(-1) x)}^(2)