Home
Class 12
MATHS
If z = x - iy and z'^(1/3) = p +iq, then...

If `z = x - iy` and `z'^(1/3) = p +iq,` then `1/(p^2+q^2)(x/p+y/q)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If z = x - iy and z^(1/3)=p+iq, " then "(x/p+y/q)//(p^2+q^2)=

If z=x+iy and z^(1/3) = p+iq, then (x/p+y/q) ÷ ( p^2 - q^2 )=

Let z =x-iy and z^(1/3)= p+iq .Then (x/p+y/q)//(p^2+q^2) is equal to:

If z=x-iy and z^(1/3)=p+iq then (x/p+y/q)/(p^2+q^2) is equal to

If z= x-iy" and "z^(1/3)= p+iq , then (((x)/(p)+(y)/(q)))/((p^(2)+q^(2)) is equal to

If z=x-iy , z^((1)/(2)=p+iq , then : ((x)/(p)+(y)/(q))//(p^(2),q^(2)) is equal to:

If z=x-i y and z^(1 / 3)=p+i q then ((x)/(p)+(y)/(q)) div(p^(2)+q^(2))=

If p^(2)+q^(2)=1,p,q in R, then (1+p+iq)/(1+p-iq) is equal to