Home
Class 11
MATHS
" Find the minimum value of "((x+(1)/(x)...

" Find the minimum value of "((x+(1)/(x))^(6)-(x^(6)+(1)/(x^(6)))-2)/((x+(1)/(x))^(3)+x^(3)+(1)/(x^(3)))" for "x>0

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of ((x+1/x)^6-(x^6+1/(x^6))- 2)/((x+1/x)^3+x^3+1/x^3) is (for x>o)

The minimum value of ((x+1/x)^6-(x^6+1/(x^6))- 2)/((x+1/x)^3+x^3+1/x^3) is (for x>o)

Minimum value of ((1+x^(2))(1+x^(6)))/(x^(4)) is

x^(3)-(1)/(x^(3))-6x+(6)/(x)

If x = sqrt7 + sqrt6 , then find the simpliest value of (a) x - (1)/(x) , (b) x + (1)/(x) , (c) x^(2) + (1)/(x^(2)) , (d) x^(3) + (1)/(x^(3))

The minimum value of x^3-6x^2+9x+1 is

If x+ (1)/(x)=3 , then x^(6) + (1)/(x^(6))= ?

lim_(x rarr0)((1+x)^((1)/(6))-(1-x)^((1)/(6)))/(x)=(1)/(3)

x=(6-sqrt(32))/(2) thenfindthevalueof (x^(3)+(1)/(x^(3)))-6(x^(2)+(1)/(x^(2)))+(x+(1)/(x))

If x=(6-sqrt(32))/(2), then find the value of (x^(3)-(1)/(x^(3)))^(2)-6(x^(2)+(1)/(x^(2)))+(x+(1)/(x))