Home
Class 12
MATHS
Find the minimum value of the expression...

Find the minimum value of the expression `y=((cot^2theta+5)(cot^2theta+10))/(cot^2theta+1)` , for all permissible value of `theta`.

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of 27 tan^2 theta+3 cot ^2 theta is

The value of the expression (cos^(6)theta+sin^(6)theta-1)(tan^(2)theta+cot^(2)theta+2) is :

The value of the expression (cos^6 theta + sin^6 theta - 1)(tan^2 theta + cot^2 theta + 2) is:

Find the minimum value of 16tan^2theta+9cot^2theta

then the value of the expression E=(sqrt(1+tan^(2)theta))/(tan theta)-(sqrt(1+cot^(2)theta))/(cot theta) is equal to

Find the minimum value of 9tan^2theta+4cot^2theta

Find the minimum value of 9tan^2theta+4cot^2theta

Find the minimum value of 9tan^2theta+4cot^2theta