Home
Class 12
MATHS
F(x)=lim(n rarr oo)(sin x)^(2n)," then "...

F(x)=lim_(n rarr oo)(sin x)^(2n)," then "f" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=lim_(n rarr oo)(sin x)^(2n)

lim_(x rarr oo) (1+2/n)^(2n)=

Let f(x)= lim_(n->oo)(sinx)^(2n)

The points of discontinuity of the function f(x)=lim_(x rarr pi)((sin x)^(2n),n in I are

Let f(x)=lim_(n to oo) sinx/(1+(2 sin x)^(2n)) then f is discontinuous at

lim_(n rarr oo)2^(n)sin(a)/(2^(n))

Discus the continuity of the function f(x)=lim_(n rarr oo)((1+sin x)^(n)+In x)/(2+(1+sin x)^(n))

The points where f(x)=lim_(x rarr oo)(sin(pi(x)/(2)))^(2)n is discontinuous are:

If f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1) then range of f(x) is

lim_(n rarr oo)(1)/(1+n sin^(2)x), then find f((pi)/(4)) and also comment on the continuity at x=0