Home
Class 10
MATHS
If the system of equations a1x+b1y+c1, a...

If the system of equations `a_1x+b_1y+c_1, a_2x+b_2y+c_2=0` is inconsistent, `a_1/a_2=b_1/b_2!=c_1/c_2`.

Text Solution

Verified by Experts

`a_1x+b_1y+c_1=0`
`a_2x+b_2y+c_2=0`
`a_1/a_2=b_1/b_2!=c_1/c_2`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The pair of equations a_1x+b_1y+c_1=0" and "a_2x+b_2y+c_2=0 are consistent, then……..

For two linear equations , a_1x + b_1y + c_1=0 and a_2x + b_2y + c_2 = 0 , the condition (a_1)/(a_2)=(b_1)/(b_2)=(c_1)/(c_2) is for.

If a_1/a_2!=b_1/b_2 then the system of equation a_1x+b_1y+c_1=0 , a_2x+b_2y+c_2=0 has

|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=0 then the system of equations a_1x+b_1y+c_1z=0, a_2x+b_2y+c_2z=0, a_3x+b_3y+c_3z=0 has

Consider the system of equations a_1x+b_1y+c_1z=0 a_2x+b_2y+c_2z=0 a_3x+b_3y+c_3z=0 if {:abs((a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)):}=0 , then the system has

The system of equations a_1x+b_1y+c_1z=0 a_2x+b_2y+c_2z=0 a_3x+b_3y+c_3z=0 [[a_1,b_1,c_1],[a_2,b_2,c_2],[a_3,b_3,c_3]]=0

In the pair of linear equations a_1x+b_1y+c_1=0 and a_2x+ b_2y + C_2 = 0. If a_1/a_2 ne b_1/b_2 then the

Write the number of solution of the following system of equation. a_1x+b_1y+c_1z=0 a_2x+b_2y+c_2z=0 a_3x+b_3y+c_3z=0 and [[a_1,b_1,c_1],[a_2,b_2,c_2],[a_3,b_3,c_3]] =0