Home
Class 10
MATHS
(x+3)/(x-3)+(x-3)/(x+3)=2 1/2...

`(x+3)/(x-3)+(x-3)/(x+3)=2 1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for : x :(x-1)/(x-2)+(x-3)/(x-4)=3 1/3,x!=2,4

Solve for x : (x-1)/(x-2)+(x-3)/(x-4)=3 1/3;\ \ x!=2,\ 4

Solve for :x:(x-1)/(x-2)+(x-3)/(x-4)=3(1)/(3),x!=2,4

Solve for x:(x-1)/(x-2)+(x-3)/(x-4)=3(1)/(3);x!=2,4

(x+3)/(2x+3)=(x+1)/(3x+2)

Solve for x : (2x)/(x - 3) + (1)/(2 x + 3) + (3x + 9)/((x - 3) (2x + 3)) = 0 x ne 3 , -3//2

Solve for x : 1/ ((x -1)(x -2))+1/( (x-2)(x-3))=2/ 3', x is not equal to 1,2,3 .

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)