Home
Class 12
MATHS
If y=e^x^e^x+e^x^x^e , prove that (dy)/(...

If `y=e^x^e^x+e^x^x^e` , prove that `(dy)/(dx)=e^x^e^xdotx^e^x{(e^x)/x+edotlogx}+x^e^e^xdote^e^x{1/x+dotlogx}+e^x^x^ex^x^ex^(e-1){1+elogx}`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x^(e^x))+x^(e^(e^x))+e^(x^(x^e)) , prove that (dy)/(dx)=e^(x^(e^x)) . x^(e^x){(e^x)/x+e^x.logx}+x^(e^(e^x)).e^(e^x){1/x+e^xdotlogx}+e^(x^(x^e)).x^(x^e).x^(e-1){1+elogx}

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1))

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

If e^x+e^y=e^(x+y) , prove that dy/dx=-e^(y-x)

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^x + e^y = e^(x+y) , prove that dy/dx = -e^(y-x)

if y = e^((x)^(e^x)) + x^(e^(e^x)) + e^(x^(x^e)) , then dy/dx =e^((x)^(e^x)) x^(e^x)[e^xlogx+e^x/x]+ x^(e^(e^x)) e^(e^x)[1/x+e^xlogx]+e^(x^(x^e))x^(x^e)x^(e-1)[1+elogx]