Home
Class 12
MATHS
If lim(x->0)(x^n*sin^nx)/(x^n-sin^n x) ...

If `lim_(x->0)(x^n*sin^nx)/(x^n-sin^n x)` is non-zero finite, then `n` must be equal to 4 (b) 1 (c) 2 (d) 3

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to (a) 4 (b) 1 (c) 2 (d) 3

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to 4 (b) 1 (c) 2 (d) 3

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to 4 (b) 1 (c) 2 (d) 3

If lim_(xto0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to 4 (b) 1 (c) 2 (d) 3

If lim_(x rarr0)(x^(n)*sin^(n)x)/(x^(n)-sin^(n)x) is non-zero finite,then n must be equal to 4(b)1(c)2(d)3

If lim_(x to 0) (x^n-sin^n x)/(x-sin^n x) is nonzero and finite , then n in equal to

If underset(x to 0)lim""(x^(n)sin^(n)x)/(x^(n)-sin^(n)x) is non-zero finite, then n equals :

lim_(n->oo)sin(x/2^n)/(x/2^n)

(2) lim_(n rarr0) (n!sin x)/(n)

lim_(x->0) (sin(nx)((a-n) nx-tan x))/ x2., when n is a non-zero positive integer, then a is equal to