Home
Class 12
MATHS
If p=acos^2thetasintheta and q=asin^2the...

If `p=acos^2thetasintheta` and `q=asin^2thetacostheta` then `((p^2+q^2)^3/(p^2q^2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = acos^(3)theta sin^(2)theta , y = asin^(3)theta cos^(2)theta and (x^(2) + y^(2))^(p)/(xy)^(q)(p,q in N) is independent of theta , then :

If sin theta=p and cos theta=q then the value of (p-2p^(3))/(2q^(3)-q) is

If P={theta:sintheta-costheta=sqrt2costheta} and Q={theta: sintheta+costheta=sqrt2 sintheta} , then show that P = Q.

5pq(p^2 - q^2) -: 2p(p+q)

Given that p = -3 and q = 2, evaluate p^(2)+(-pq^(2))-p^(2)q^(2) .

If P=acos^(3)x+3acosx.sin^(2)xandQ=asin^(3)x+3acos^(2)x.sinx , then (P+Q)^(2//3)+(P-Q)^(2//3)=?

Show that the sequence (p + q)^(2), (p^(2) + q^(2)), (p-q)^(2) … is an A.P.

Show that the sequence (p + q)^(2), (p^(2) + q^(2)), (p-q)^(2) … is an A.P.

For p,q in R, the roots of (p^2+q^2)x^2+2(p+q)x+2=0 are

If two distinct chords, drawn from the point (p, q) on the circle x^2+y^2=p x+q y (where p q!=q) are bisected by the x-axis, then p^2=q^2 (b) p^2=8q^2 p^2 8q^2