Home
Class 11
MATHS
The value of lim(x->0)((sinx-tanx)^2-(1-...

The value of `lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x)` equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(tan^(-1)x-sin^(-1)x)/(sin^(3)x), is equal to

lim_(x rarr0)(sin2x+tan3x)/(4x-sin5x)

The value of lim_(xto0) ((1-cos2x)sin5x)/(x^(2)sin3x) is

lim_(x->0)((1-cos2x)sin5x)/(x^2sin3x)

The value of lim_(x rarr0)(sin^(-1)(2x)-tan^(-1)x)/(sin x) is equal to:

lim_(x rarr0)(((sinx)(1-cos x))-(x^(3)/2)+(x^(5)/8))/x^(7)

value of lim_(x rarr0)((1-cos2x)sin11x)/(x^(2)sin7x) is

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to