Home
Class 12
MATHS
sin^(-1)(1-x)-2sin^(-1)x=pi/2, then x is...

`sin^(-1)(1-x)-2sin^(-1)x=pi/2`, then x is equal to(A) `0,1/2` (B) `1,1/2` (C) 0 (D) `1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x which satisfies sin^(-1)(1-x)-2sin^(-1)x=(pi)/(2) is (A) x=1 (B) x=(1)/(2)(C)x=0 (D) none of these

If |sin^(-1)x|+|cos^(-1)x|=pi/2 then x in a)R b) [-1,1] c) [0,1] d) phi

If |sin^(-1)x|+|cos^(-1)x|=pi/2,t hen (a) x inR (b) [-1,1] (c) [0,1] (d) varphi

If [[x,1]][[1,0],[2,0]]=0 ,then x equals (A) 0 (B) -2 (C) -1 (D) 2

int_(-pi//2)^(pi//2)"sin"|x|dx is equal to (a) 1 (b) 2 (c) -1 (d) -2

int_0^1d/(dx){sin^(-1)((2x)/(1+x^2))}dx is equal to 0 (b) pi (c) pi//2 (d) pi//4

int_0^1d/(dx){sin^(-1)((2x)/(1+x^2))}dx is equal to 0 (b) pi (c) pi//2 (d) pi//4

lim_(x->oo)(sin^4x-sin^2x+1)/(cos^4x-cos^2x+1) is equal to (a) 0 (b) 1 (c) 1/3 (d) 1/2

If |sin^(-1)x|+|cos^(-1)x|=(pi)/(2), then (a) x in R (b) [-1,1](c)[0,1](d)varphi

int_(-pi//2)^(pi//2)"sin"|x|dx is equal to 1 (b) 2 (c) -1 (d) -2