Home
Class 12
MATHS
Suppose I1=int0^(pi/2)cos(pisin^2x)dx a...

Suppose `I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2int_0^3cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

Suppose _((pi)/(2))cos(pi sin^(2)x)dx and I_(2)int_(0)^(3)cos(2 pi sin^(2)x)dx and I_(3)=int_(0)^((pi)/(2))cos(pi sin x)dx, then

u=int_0^(pi/2)cos((2pi)/3sin^2x)dx and v=int_0^(pi/2) cos(pi/3 sinx) dx

u=int_0^(pi/2)cos((2pi)/3sin^2x)dx and v=int_0^(pi/2) cos(pi/3 sinx) dx

int_0^(pi//2) x^2 cos 2x dx

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

If I_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)dx \ ,a n d \ I_3=int_0^(pi/2)cosx dx , then find the order in which the values I_1,I_2,I_3, exist.

If I_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)dx \ ,a n d \ I_3=int_0^(pi/2)cosx dx , then find the order in which the values I_1,I_2,I_3, exist.