Home
Class 12
MATHS
The equation tan^(-1)x+cot^(-1)x=pi//2 i...

The equation `tan^(-1)x+cot^(-1)x=pi//2` is true for `x in `

A

R

B

`R-{0}`

C

`(0, pi//2)`

D

`(0, pi)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A(FUNCTIONS)|140 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • Hyperbola

    DIPTI PUBLICATION ( AP EAMET)|Exercise SET 4|4 Videos

Similar Questions

Explore conceptually related problems

The equation Sin^(-1)x+Cos^(-1)x=pi//2 is true for x in

If 2Tan^(-1)x+Sec^(-1)x=pi//2 then x =

A solution of the equation Tan^(-1)(1+x)-Tan^(-1)(x-1)=pi//2 is

A solution of the equation Tan^(-1)(1+x)+Tan^(-1)(1-x)=pi//2 is

If tan^(-1)x+2cot^(-1)x=(2pi)/3 , then x is equal to

If Tan^(-1)2x+Tan^(-1)3x=pi//4 , then x =

If tan^(-1)(a//x)+tan^(-1)(b//x)=pi//2 then x=

sin[cot^(-1){cos(tan^(-1)x)}]=

If "Tan"^(-1)a/x+"Tan"^(-1)b/x=pi/2 then x =