Home
Class 12
MATHS
Let f(x)=Sec^(-1)[1+cos^(2)x] where [.] ...

Let `f(x)=Sec^(-1)[1+cos^(2)x]` where `[.]` denotes the greatest integer function
I : Domain of `f(x)` is R
II : Range of f(x) is `{Sec^(-1)1, Sec^(-1)2}`

A

only I is true

B

only II is true

C

both I and II are true

D

neither I nor II are true

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B(DOMAINS, RANGES OF REAL FUNCTIONS)|138 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • Hyperbola

    DIPTI PUBLICATION ( AP EAMET)|Exercise SET 4|4 Videos

Similar Questions

Explore conceptually related problems

Find the range of cosec^(-1)[1+sin^(2)x] , where [.] denotes the greatest integer function

If f(x)=(sin ([x]pi))/(x^(2)+x+1) , where [.] denotes the greast integer function, then

If f(x)=(x^(2)+1)/([x]) , ([.] denotes the greatest integer function), 1 le x lt 4 , then

Let R=(2+sqrt3)^(2n) and f=R-[R] where [ ] denotes the greatest integer function , then R(1-f)=

The range of the function f(x)=[sinx+cosx] (where [x] denotes the greatest integer function) is

If f(x) = cos|e^(2)| x + cos[-e^(2)]x where [x] stands for greatest integer function, then

The range of sin^(-1)[x^(2)+1/2] + cos^(-1)[x^(2)- 1/2] , where [.] denotes the greatest integer function, is