Home
Class 9
MATHS
[" 8."p(x)=6x^(3)+13x^(2)+3,g(x)=3x+2],[...

[" 8."p(x)=6x^(3)+13x^(2)+3,g(x)=3x+2],[" 9."p(x)=6x^(3)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Use the factor theorem, to determine whether g(x) is a factor of p(x) in each of the following cases : (i) p(x)=2x^(3)+x^(2)-2x-1,g(x)=x+1 (ii) p(x)=x^(3)+3x^(2)+3x+1,g(x)=x+2 (iii) p(x)=x^(3)-4x^(2)+x+6,g(x)=x-3

Verify the division algorithm for the polynomials p(x)=2x^(4)-6x^(3)+2x^(2)-x+2andg(x)=x+2 . p(x)=2x^(3)-7x^(2)+9x-13,g(x)=x-3 .

Check whether g(x) is a factor of p(x) by dividing the first polynomial by the second polynomial: (i) p(x) = 4x^(3) + 8x + 8x^(2) +7, g(x) =2x^(2) -x+1 , (ii) p(x) =x^(4) - 5x -2, g(x) =2-x^(2) , (iii) p(x) = 13x^(3) -19x^(2) + 12x +14, g(x) =2-2x +x^(2)

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=6x^(3)+13x^(2)+3,g(x)=3x+2 .

Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases: (i) p(x)=2x^3+x^2-2x-1,g(x)=x+1 (ii) p(x)=x^3+3x^2+3x+1,g(x)=x+2 (iii) p(x)=x^3+4x^2+x+6,g(x)=x-3

Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases: (i) p(x)=2x^3+x^2-2x-1,g(x)=x+1 (ii) p(x)=x^3+3x^2+3x+1,g(x)=x+2 (iii) p(x)=x^3+4x^2+x+6,g(x)=x-3

Divide p(x) by g(x) in each of the following questions and find the quotient q(x) and remainder r(x) : p(x)=x^(4)+6x^(3)-4x^(2)+2x+1, " " g(x)=x^(2)+3x-1

Divide p(x) by g(x) in each of the following questions and find the quotient q(x) and remainder r(x) : p(x)=x^(4)+6x^(3)-4x^(2)+2x+1, " " g(x)=x^(2)+3x-1

If p(x)=8x^(3)-6x^(2)-4x+3 and g(x) = (x)/(3)-(1)/(4) then check whether g (x) is a factor of p(x) or not.