Home
Class 12
MATHS
" 7.If "y=e^(x^(e^(x)))+x^(e^(e^(x)))+e^...

" 7.If "y=e^(x^(e^(x)))+x^(e^(e^(x)))+e^(x^(x^(e)))," prove that "

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x^(e^x))+x^(e^(e^x))+e^(x^(x^e)) , prove that (dy)/(dx)=e^(x^(e^x)) . x^(e^x){(e^x)/x+e^x.logx}+x^(e^(e^x)).e^(e^x){1/x+e^xdotlogx}+e^(x^(x^e)).x^(x^e).x^(e-1){1+elogx}

y=e^(x^(e^(x)))+x^(e^(e^(x))) , find (dy)/(dx)

(e^(x)-e^(-x))/(e^(x)+e^(-x))

if y = e^((x)^(e^x)) + x^(e^(e^x)) + e^(x^(x^e)) , then dy/dx =e^((x)^(e^x)) x^(e^x)[e^xlogx+e^x/x]+ x^(e^(e^x)) e^(e^x)[1/x+e^xlogx]+e^(x^(x^e))x^(x^e)x^(e-1)[1+elogx]

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)), prove that (dy)/(dx)=1-y^(2)

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)) ,then (dy)/(dx) =

(e^x+e^-x)/(e^x-e^(-x))

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

(e^x+e^(-x)) d y-(e^x-e^(-x)) d x=0