Home
Class 12
MATHS
[" The volume of tetrahedron "],[" with ...

[" The volume of tetrahedron "],[" with edges "bar(i)timesbar(j),bar(j)timesbar(k),bar(k)timesbar(i)]

Promotional Banner

Similar Questions

Explore conceptually related problems

The volume of tetrahedron with edges bar(i)xx(1)/(j)*bar(j)xxbar(k)*bar(k)xxbar(i)

If the volume of tetrahedron with edges bar(i)+bar(j)-bar(k) , bar(i)+abar(j)+bar(k) and bar(i)+2bar(j)-bar(k) is (a)/(6) then a=

If the volume of the tetrahedron with edges 2bar(i)+bar(j)+bar(k),bar(i)+abar(j)+bar(k) and vec i+2bar(j)-bar(k) is one cubic unit then a=

Find the volume of the tetrahedron having the edges , bar(i) + bar(j) + bar(k), bar(i)-bar(j), bar(i) + 2bar(j) + bar(k) .

The point of intersection of the lines bar(r)timesbar(a)=bar(b)timesbar(a) and bar(r)timesbar(b)=bar(a)timesbar(b) is 1. bar(a)-bar(b) 2. bar(a)+bar(b) 3. 2bar(a)+3bar(b) 4. 3bar(a)-2bar(b)

Compute [bar(i) - bar(j). bar(j) - bar(k). bar(k) -bar(i)] .

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

The volume of parallelo piped whose coterminus edges are bar(i)-bar(j),2bar(i)+bar(j)+bar(k),bar(i)-bar(j)+3bar(k) is

If bar(a),bar(b),bar(c) are three coterminous edges of a parallelopiped of volume 6 then value of [bar(a)timesbar(b)quad bar(a)timesbar(c)quad bar(b)timesbar(c)]=