If (x^(2)+5x+6)/(x+2)=12 , what is the value of x?
Verity the property: x\ "x"\ (y+z)=x\ "x"\ y+x\ "x"\ z\ b y\ t a k ing:\ x=(-3)/7, y=(12)/(13), z=(-5)/6 x=(-12)/5, y=(-15)/4, z=8/3
If ax^(2)+bx+c=0 and 5x^(2)+6x+12=0 have a common root where a, b and c are sides of a triangle ABC , then
If ax^(2)+bx+c=0 and 5x^(2)+6x+12=0 have a common root where a, b and c are sides of a triangle ABC , then (A) Delta ABC is obtuse angled (B) Delta ABC is acute angled (C) Delta ABC is right angled (D) no such triangle exists
Verity the property: x\ "x"\ (y+z)=x\ "x"\ y+x\ "x"\ z\ :\ (i) x=(-3)/7, y=(12)/(13), z=(-5)/6 (ii) x=(-12)/5, y=(-15)/4, z=8/3