Home
Class 12
MATHS
[" If "f(x)=log(sec2x)|cos4x|+|sin x|" t...

[" If "f(x)=log_(sec2x)|cos4x|+|sin x|" thon "(df(x))/(dx)" at "],[x=-(pi)/(6)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log_(u)|cos4x|+|sin x|, where u=sec2x find (dy)/(dx) at x=-(pi)/(6)

If y=log_u|cos4x|+|sinx| ,where u=sec2x find (dy)/(dx) at x=-pi/6

f(x)=(2x-pi)^(3)+2x-cos x, then (df^(-1)(x))/(dx)| is

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

If f(x) = |cos x- sin x| then find f'((pi)/(6))

If f'(x)=sin x+sin4x cos x then f'(2x^(2)+(pi)/(2))=

If f(x) =log_(e) (x^(2)-4) then find (df) /(dx)