Home
Class 12
MATHS
" 13) If "A^(2)-A+I=0" then "A^(-1)=7...

" 13) If "A^(2)-A+I=0" then "A^(-1)=7

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is a non-singular square matrix such that A^(2)-7A+5I=0, then A^(-1)

If a matrix A is such that 4A^(3)+2A^(2)+7A+I=0 , then A^(-1) equals

If a matrix A is such that 4A^(3)+2A^(2)+7A+I=0 , then A^(-1) equals: a) 4A^(2)+2A+7I b) -(4A^(2)+2A+7I) c) -(4A^(2)-2A+7I) d) 4A^(2)+2A-7I

If A is a square matrix and |A|!=0 and A^(2)-7A+I=0 ,then A^(-1) is equal to (I is identity matrix)

If A=[[3,1-1,2]],I=[[1,00,1]] and O=[[0,00,0]], show that A^(2)-5A+7I=0 Hence find A^(-1)

If A=[[3, 1], [-1, 2]] and A^(2)-5A+7I=0 , then I=

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

If A=([2,-1],[1,3]) then show that A^2-5A+7I_2=0 hence find A^(-1)

If A = [[3,1],[-1,2]] ,show that A^2-5A + 7I=0 Hence, find A^(-1)