Home
Class 9
MATHS
[" 7f "x" ,y and "z" are positive Real N...

[" 7f "x" ,y and "z" are positive Real Numbers,"],[" show that "],[sqrt(x^(-1)y)*sqrt(y^(-1))z*sqrt(z^(-1)x)=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z are positive real numbers show that: sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)x)=1

Prove that sqrt(x^(-1)y)xxsqrt(y^(-1)z)xxsqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x ,y ,z are positive real number, then show that sqrt((x^(-1)y) x sqrt((y^(-1)z) x sqrt((z^(-1)x) =1

If x,y,z are positive real numbers, prove that: sqrt(x^-1 y).sqrt(y^-1z).sqrt(z^(-1)x)=1

Show : sqrt( x^-1y) times sqrt( y^-1z ) times sqrt( z^-1x) = 1

Assuming that x ,\ y ,\ z are positive real numbers, simplify each of the following: (sqrt(x))^(-2/3)\ sqrt(y^4)-:\ sqrt(x y^(-1/2)) (ii) root(5)(243\ x^(10)y^5z^(10))

If x, y, z are distinct positive real numbers is A.P. then (1)/(sqrt(x)+sqrt(y)), (1)/(sqrt(z)+sqrt(x)), (1)/(sqrt(y)+sqrt(z)) are in