Home
Class 9
MATHS
If sqrt(9^(x))=root(3)(9^(2)) then x=………...

If `sqrt(9^(x))=root(3)(9^(2))` then `x=`………………

A

`2/3`

B

`4/3`

C

`1/3`

D

`5/3`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • REAL NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS AND ANSWERS|49 Videos
  • REAL NUMBERS

    SURA PUBLICATION|Exercise UNIT TEST|19 Videos
  • REAL NUMBERS

    SURA PUBLICATION|Exercise EXERCISE 2.8|18 Videos
  • PROBABILITY

    SURA PUBLICATION|Exercise Unit test (part - B)|4 Videos
  • SET LANGUAGE

    SURA PUBLICATION|Exercise UNIT TEST|20 Videos

Similar Questions

Explore conceptually related problems

(x-3)/(x^(2)-9)=___ .

If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Asqrt(1-9x^(2))+B(cos^(-1)3x)^(3)+C, then A-B is

sqrt(9 - (2x + 5 )^(2))

Integrate (8)/(sqrt(1-(4x)^(2)))+(27)/(sqrt(1-9x^(2)))-(15)/(1+25x^(2)) with respect to x .

If f(x)= 3 sqrt((9)/(log_2 (3-2x) - 1) then the value of ' a ' which satisfies f^-1(2 a-4)=1/2 , is

lim_(xto3)(sqrt(x)-sqrt(3))/(sqrt(x^(2)-9)) is equal to

Solve sqrt((x-5))-sqrt(9-x)>0,x in Zdot

lim_(xto2)(2-sqrt(x+2))/(root(3)(2)-root(3)(4-x))

If int sqrt(1-x^2)/x^4dx=A(x).(sqrt(1-x^2))^m where A(x) is a function of x then (A(x))^m = (A) -1/(27x^9) (B) 1/(27x)^9 (C) 1/(3x^9) (D) -1/(3x^9)

Find the value of x for which function are identical. f(x)=(sqrt(9-x^2))/(sqrt(x-2))a n dg(x)=sqrt((9-x^2)/(x-2))