Home
Class 11
MATHS
If theta is an acute angle, then find ...

If `theta `is an acute angle, then find
cos `((pi)/(4) + (theta)/(2))`, when sin `theta = (8)/(9)`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(3sqrt(2))`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.6|21 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.7|14 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.4|37 Videos
  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise section -IV|7 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS - SECTION - D|3 Videos

Similar Questions

Explore conceptually related problems

If theta is an acute angle, then find sin ((pi)/(4)-(theta)/(2)) when sin theta = (1)/(25)

If theta is an acute angle and sin((theta)/(2))=sqrt((x-1)/(2x)) ,then tan theta is equal to

If sin ((pi)/(4) cot theta) = cos ((pi)/(4) tan theta ) , then theta =

For which value of an acute angle theta ,(i) ( cos theta )/( 1-sin theta ) +(cos theta )/( 1+sin theta ) =4 is true ? For which value of 0^(@) le theta le 90 ^(@) , above equation is not defined?

If theta and phi are acute angles satisfying sin theta=1/2, cos phi=1/3 then theta+phi=

If theta is an acute angle and tan theta + cot theta=2 find the value of tan^(7)theta+cot^(7)theta

If cos[(3pi)/4 -theta]-sin[(3pi)/4 +theta]=1 ,find theta