Home
Class 11
MATHS
If A + B + C = 2s, then prove that sin (...

If A + B + C = 2s, then prove that sin (s - A) sin (s - B) + sin s. sin (s - C) = sin A sin B .

Text Solution

Verified by Experts

The correct Answer is:
sin A sin B
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.8|18 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.9|16 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.6|21 Videos
  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise section -IV|7 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS - SECTION - D|3 Videos

Similar Questions

Explore conceptually related problems

Prove that sin (A+B)= sin A cos B + cos A sin B.

If A + B + C = 180^(@) , prove that sin(B + C - A) + sin (C + A - B) + sin(A + B + C) = 4 sin A sin B sin C.

Prove that sin ( A + B) sin (A - B) = sin^(2) A - sin^(2)B .

Prove that sin^(2)(A + B) - sin^(2)(A - B) = sin 2A sin 2B

If A + B + C = 180^(@) , prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C

If A + B + C = (pi)/(2) , prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B - sin^(2)C = 2 sin A sin B cos C

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin Asin Bsin Cdot

Expand cos ( A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = (pi)/(2) .