Home
Class 11
MATHS
If A + B + C = (pi)/(2), prove that co...

If A + B + C `= (pi)/(2)`, prove that
cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B cos C

Text Solution

Verified by Experts

The correct Answer is:
1 + 4 sin A sin B sin C
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.8|18 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.9|16 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.6|21 Videos
  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise section -IV|7 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS - SECTION - D|3 Videos

Similar Questions

Explore conceptually related problems

Prove that a cos A + b cos B + c cos C = 4 R sin A sin B sin C.

If A + B + C = (pi)/(2) , prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C

If A + B + C = 180^(@) , prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C

If A + B + C = 180^(@) , prove that cos A + cos B - cos C = -1 + 4 cos (A)/(2) cos"" (B)/(2) sin"" (C )/(2)

Prove that cos (A + B) cos C - cos (B + C) cos A = sin B sin (C - A)

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B - sin^(2)C = 2 sin A sin B cos C

Prove that sin (A+B)= sin A cos B + cos A sin B.

Expand cos ( A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = (pi)/(2) .

In a triangleABC, prove that a cos A+b cos B+c cos C=2a sin B sin C

Prove that cos (A + B) cos (A - B) = cos^(2) B - sin^(2) A